廣西師范大學數學與統計學院
地址:廣西桂林市育才路15號
電話:0773—5846489(育才)
          0773—5802163(雁山)
網站:www.95553544.buzz
郵箱:mathoff@gxnu.edu.cn
紀委郵箱:stxyjw@gxnu.edu.cn
張映輝
博士,教授,博士生導師,廣西杰出青年基金獲得者,廣西高等學校中青年骨干教師,廣西師范大學A類漓江學者。
Email: zhangyinghui0910@126.com
流體力學及生物學中的偏微分方程、數學教育
1.本科生課程:《數學分析》、《常微分方程》等
2.研究生課程:《Sobolev空間》、《現代偏微分方程》等
[1]國家自然科學基金青年項目:兩類非線性雙曲-拋物耦合方程的粘性消失極限問題(11301172),已結題。
[2]國家自然科學基金天元青年基金項目:非等熵可壓縮Navier-Stokes方程的零耗散極限問題(11226170),已結題。
[3]廣西杰出青年科學基金項目:偏微分方程(2019JJG10003),在研。
[4]廣西科技計劃人才專項項目:具有磁場效應的兩相流模型的衰減率研究(2019AC20214),在研。
[5]國家自然科學基金面上項目子項目:可壓縮Navier-Stokes-Vlasov-Fokker-Pl
-anck方程及相關模型解的適定性(11771150),在研。
[6]國家自然科學基金面上項目子項目:可壓縮非守恒兩相流模型的若干數學問題(11571280),在研。
[7]湖南省自然科學基金面上項目:液體-氣體兩相流模型初邊值問題的研究(2017JJ2105),已結題。
[8]湖南省自然科學基金青年項目:Navier-Stokes方程的零耗散極限問題研究(13JJ4095),已結題。
[9]中國博士后科學基金:可壓Navier-Stokes方程的粘性消失極限問題研究(2012M511640),已結題。
[10]湖南省教育廳優秀青年項目:兩類非線性偏微分方程初值問題的適定性和零耗散極限(14B077),已結題(鑒定為優秀)。
[11]湖南省教育廳一般項目:Navier-Stokes方程的消失的粘性極限問題(11C0628),已結題。
專著
[1]Yinghui Zhang*, Zhong Tan, Mathematical analysis of Navier-Stokes equations and related models, LAP Lambert Academic Publishing,Germany, 2014.
論文
[1]Guochun Wu,Yinghui Zhang*,Lan Zou, Optimal large time behavior of the two-phase fluid model in the whole space, SIAM Journal on Mathematical Analysis, 52(6)(2020), 5748-5774.
[2]Guochun Wu, Yinghui Zhang*, Weiyuan Zou, Optimal time-decay rates forthe 3D compressible Magnetohydrodynamic flows with discontinuous initial dataand large oscillations, Journal of the London Mathematical Society, doi: 10.1112/jlms.12393, 2020.
[3] Yinghui Zhang*, Local well-posedness ofthe free-surface incompressible elastodynamics, Journal of Differential Equations, 268 (2020), 6971–7011.
[4] Guochun Wu, YinghuiZhang*, Global well-posedness and large time behavior of the viscousliquid-gas two-phase flow model in R^3, Proceedings of the Royal Society of Edinburgh Section A Mathematics, 150 (2020), 1999–2024.
[5] Guochun Wu, Yinghui Zhang*, Anzhen Zhang. Global existenceand time decay rates for the 3D bipolar compressible Navier-Stokes-Poissonsystem with unequal viscosities, Science China Mathematics, doi.org/10.1007/s11425-020-1719-9, 2020.
[6] Yinghui Zhang*,Weaksolutions for an inviscid two-phase flow model in physical vacuum, Journal of Differential Equations, 265(12)(2018), 6251–6294.
[7] Yinghui Zhang,Changjiang Zhu, Global existence and optimal convergence rates for the strongsolutions in to the 3D viscous liquid-gastwo-phase ?ow model, Journal of Differential Equations, 258 (7) (2015), 2315–2338.
[8] Yinghui Zhang*,Ronghua Pan, Yi Wang, Zhong Tan, Zero dissipation limit with two interactingshocks of the 1D non-isentropic Navier-Stokes equations, Indiana University Mathematics Journal, 62(1)2013,249–309.
[9] Yinghui Zhang*,Decay of the 3D inviscid liquid–gas two-phase ?ow model, Zeitschriftfür angewandte Mathematik und Physik , 67 (54) (2016), 1–22.
[10] Yinghui Zhang*,Decay of the 3D viscous liquid-gas two-phase ?ow model with damping, Journal of Mathematical Physics , 081517, 2016.
[11] Guochun Wu, YinghuiZhang*,Global analysis of strong solutions for the viscous liquid-gastwo-phase flow model in a bounded domain, Discrete and Continuous Dynamical System – B, 23(4) (2018), 1411–1429.
[12] YinghuiZhang*, Ronghua Pan, Zhong Tan, Zero dissipation limit to a Riemannsolution consisting of two shock waves for the 1D compressible isentropicNavier-Stokes equations, Science China Mathematics, 56(11)2013, 2205–2232.
[13]QingChen, Guochun Wu, Yinghui Zhang* , LanZou, Optimal timedecay rates for the compressible Navier-Stokes system with and withoutYukawa-type potential. Electronic Journal of Differential Equations (2020), 2020(102): 1-25.
[14] YinghuiZhang*, Zhong Tan, Ming-Bao Sun,Global existence and asymptotic behavior of smoothsolutions to a coupled hyperbolic-parabolic system, Nonlinear Analysis: Real World Applications, 14(2013), 465–482.
[15] Yinghui Zhang*,Zhong Tan, Ming-Bao Sun, Zero relaxation limit to centered rarefactionwaves for Jin-Xin relaxation system,Nonlinear Analysis: Theory, Methods & Applications,74(2011),2249–2261.
[16] Yinghui Zhang*,Zhong Tan, Existence and asymptotic behavior of global smooth solution forp-System with damping and boundary effect, Nonlinear Analysis:Theory, Methods & Applications,72(2010),2499–2513.
[17] Yinghui Zhang*, Zhong Tan, On theexistence of solutions to the Navier-Stokes-Poissonequations of a two-dimensional compressibleflow, Mathematical Methods in the Applied Sciences, (30)(2007), 305–329.
[18] Yinghui Zhang*, Initial boundary value problem for the 3D quasilinearhyperbolic equations with nonlinear damping, Applicable Analysis, 98(11)(2019), 2048–2063.
[19] Yinghui Zhang*,Zhong Tan, Blow-up of smooth solutions to the compressible fluid models ofKorteweg type, Acta Mathematica Sinica, English Series, 28(3)2012, 645–652.
[20] Yinghui Zhang*,Zhong Tan, Asymptotic behavior of solutions to the Navier-Stokes equationsof a two-dimensional compressible flow, Acta Mathematicae Applicatae Sinica, English Series, 27(4)2011, 697–712.
[21] Yinghui Zhang*, Haiying Deng, Ming-Bao Sun, Global analysis of smooth solutions to a hyperbolic-parabolic coupled system, Frontiers of Mathematics in China, 8(6)2013, 1437–1460.
[22] Lianhong Guo, Yinghui Zhang*, The 3D quasilinear hyperbolic equations with nonlinear damping in a general unbounded domain, Annales Polonici Mathematici, 121.2(2018),133–155.
[23] Yinghui Zhang*, Guochun Wu, Global existence and asymptotic behavior for the 3D compressible non-isentropic Euler equations with damping, Acta Mathematica Scientia,34B(2)(2014), 424–434.
[24] Yinghui Zhang*, Guochun Wu, The 3D Non-isentropic Compressible Euler Equations with Damping in a Bounded Domain, Chinese Annals of Mathematics, Series B, 37(6)(2016): 915–928.
[25] Zhong Tan, YinghuiZhang*, Shape optimization in two-dimensional viscous compressible fluids, Acta Mathematica Sinica, EnglishSeries, 26(9)2010, 1793–1806.
[26] Zhong Tan, YinghuiZhang*, Strong solutions of the coupled Navier-Stokes-Poisson equations forisentropic compressible fluids, Acta Mathematica Scientia, 30B(4)(2010), 1280–1290.
[27] Mina Jiang, YinghuiZhang*, Existence and asymptotic behavior of global smooth solution forp-system with nonlinear damping and fixed boundary effect, Mathematical Methods in the Applied Sciences,37(2014), 2585–2596.
[28] Yinghui Zhang*,Zhong Tan, Baishun Lai, Ming-Bao Sun, Global analysis ofsmooth solutions to a generalized hyperbolic-parabolic system modelingChemotaxis, ChineseAnnals of Mathematics, 33A(1)2012, 27-38;transl.in ChineseJournal of Contemporary Mathematics, 33(1)2012, 17–28.
[29] Yinghui Zhang*, Zhong Tan, Ming-Bao Sun, Global SmoothSolutions to a Coupled Hyperbolic-Parabolic System, Chinese Annals of Mathematics,34A(1)2013, 29-46; transl. in Chinese Journal ofContemporary Mathematics, 34(1)2013, 19–36.
[1] 成果“次黎曼流形上的分析和非線性偏微分方程若干問題的研究”獲湖南省自然科學獎三等獎(2/2),2017年。
[2] 成果“兩類流體力學方程的適定性和零耗散極限”獲岳陽市科學技術進步獎二等獎 (1/2),2016年。
[3] 獲得廣西杰出青年基金,2019年。
[4] 入選廣西高等學校中青年骨干教師,2019年。
[5] 入選廣西師范大學A類漓江學者,2019年。
[6] 獲得湖南省普通高校教學競賽二等獎,2011年。
美國《數學評論》(Mathematical Reviews)評論員、
國際期刊《SCIREA Journal of Mathematics》編委
??