學術報告:Hydrodynamic limit of the Boltzmann equation to the planar rarefaction wave in three dimensional space
報告人:王勇(中科院數學與系統科學研究院)
報告人簡介:王勇2012年博士畢業于中科院數學與系統科學研究院,現任中科院數學與系統科學研究院副研究員。主要研究非線性雙曲守恒律、可壓縮Navier-Stokes方程、Boltzmann方程等方程的適定性和流體動力學極限。公開發表SCI論文20余篇,主要論文發表在 Advances in Mathematics、Archive Rational Mechanics Analysis 和 SIAM Journal in Mathematics Analysis 等國際著名刊物上。曾獲中科院數學與系統科學研究院“重要科研進展獎、入選中科院數學與系統科學研究院“陳景潤未來之星”計劃、入選中科院青年創新促進會。目前主持國家自然科學基金面上項目一項;2020年9月獲國家優秀青年科學基金資助。
報告摘要: In this talk, we shall show the global in time hydrodynamic limit of Boltzmann equation to the planar rarefaction wave of compressible Euler system in three dimensional space $R^3$ for general collision kernels. Our approch is based on the Hilbert expansion, and a recent $L^2-L^\infty$ framework. In particular, we improve the $L^2$-estimate to be a localized version because the planar rarefaction wave is indeed a one-dimensional wave which makes the source terms to be not integrable in the $L^2$ energy estimate of three dimensional problem. We also point out that the wave strength of rarefaction may be large. This talk is based on a joint work with Guanfa Wang and Jiawei Zhou.